

Innovative Mathematics Pedagogy: Evidence-Based Strategies for Enhancing Student Learning

Wing Cheung Tang

Panel Head of Mathematics, Lock Tao Secondary School, Hong Kong Special Administrative Region, China

Abstract

Modern trends in mathematics education are characterized by a move away from the conventional, teacher-centered pedagogy to dynamic, student-centered classrooms. This revolution is characterized by three main pillars: the adoption of pedagogies placing students as active investigators, the strategic integration of technology to provide personalized learning, and the application of psychological principles to counter math anxiety. This review examines the efficacy of contemporary approaches such as inquiry-based learning (IBL), gamification, and culturally responsive pedagogy, with the aid of ongoing formative assessment. Synthesized studies by leading researchers and guidelines by the National Council of Teachers of Mathematics validate that these methods overall encourage critical thinking, problem-solving skills, and deep-seated conceptual understanding. Adaptive learning technology provides tailored support, whereas collaborative, inquiry-based activities build critical communication skills. Furthermore, interventions aimed at creating a growth mindset and reducing anxiety have been found to greatly improve the confidence and motivation of students. The findings are demanding a drastic shift in teachers' preparation and curriculum design. Teachers' professional growth should be oriented toward these new methods to meet the needs of the 21st century so that classrooms can promote equity, flexibility, and deep conceptual knowledge rather than superficial procedural fluency.

Keywords

Mathematics Pedagogy, Inquiry-Based Learning, Mathematics Anxiety, Formative Assessment, STEM Education

1. Introduction

Mathematics education stands at a turning point in the 21st century, driven by rapid technological innovation, advances in cognitive science, and increasing preoccupation with inclusive and equitable teaching. Mathematics has traditionally been seen as a fearsome, inaccessible area of study, with one result being widespread student anxiety and disconnection, even though it is central to the creation of analytical mind and problem-solving ability. Traditional methods of teaching, which heavily rely on procedure practice and rote memory, have increasingly shown their shortcomings in preparing students for the advanced, adaptive demands of the modern world.

A paradigm shift has been launched in educational practice and research towards pedagogy centered on deep concept understanding, learner agency, and relevance to real life. The research will synthesize and contrast and compare existing evidence-based approaches which redefine mathematics teaching and learning. Drawing on foundational literature by scholars such as mindset-based and visual learning [1], growth mindset interventions [2], and National Council of Teachers of Mathematics principles [3], the research here explores the efficacy of such approaches as inquiry-based learning [4], gamification, culturally responsive teaching, and technology-enhanced formative assessment.

These strategies share their desire to create learning environments that are as intellectually challenging as they are emotionally stimulating and supportive. By injecting psychological insight and pedagogical imagination [5], teachers can successfully overcome affective barriers such as math anxiety while simultaneously developing cognitive skills such as critical thinking and creativity. Moreover, digital technology and adaptive learning systems offer unprecedented potential to customize instruction and provide immediate, actionable feedback.

This study will review the most important conclusions of current studies demonstrating the ways in which these practices result in increased student success, both academically and mathematically, and offer implications for the training of teachers and the development of the curriculum, calling for systemic changes that will make education practice more responsive to the demands of our contemporary world. Lastly, this project aims to offer teachers, policymakers, and stakeholders a deep framework for reconceptualizing mathematics education as more inclusive, powerful, and uplifting.

2. Literature Review

2.1 Theoretical Framework

(a) Constructivism in mathematics education

Constructivism is a central theory of the teaching and learning of mathematics [6] that presupposes learning as an active process in which students actively construct their own knowledge and meanings from experience and reflection. Founded on the theory of Piaget and Vygotsky, constructivist teaching shifts the emphasis from passive receipt of information delivered by the teacher to active, social, and question-based learning. Constructivist teaching in the classroom puts problem-solving, exploration, and discussion at the heart, requesting students to come up with their own solutions and justify the reasons for them.

Students engage in open-ended activities, manipulatives, and authentic applications instead of memorizing procedures and formulas to build concept depth. Piaget's cognitive developmental theory informs active learning [7]. The teacher guides as a facilitator, guiding inquiries and creating a classroom culture where mistakes are viewed as learning opportunities. Constructivism is also focusing on collaborative learning and social interaction, where students can question each other's thought processes and share ideas. Vygotsky's Zone of Proximal Development [8] is highlighting scaffolding in problem-solving.

This approach supports math anxiety by enabling students and making mathematics a meaningful, imaginative experience. Through an emphasis on sense-making rather than speed and flexibility rather than inflexibility, constructivist methods facilitate the growth of critical thinkers capable of applying mathematical knowledge adaptively and confidently.

(b) Cognitive load theory (CLT)

Cognitive load theory [9] is a groundbreaking instructional psychology theory that deals with how architecture of human cognition affects learning. CLT posits working memory (where conscious processing occurs) is highly capacity limited, while long-term memory is vast and schema based. Learning is optimal when achieving equilibrium of the load on working memory to incorporate information into schemas.

In learning mathematics, CLT provides critical guidance on instructional design. Intrinsically complex problems place high intrinsic cognitive load due to their inherent difficulty. Poorly designed materials can place extraneous cognitive load in the guise of distracting pictures, unrelated explanations, or information in bits. The goal is to achieve a maximum of germane cognitive load, mental effort devoted to schema construction and schema hardening.

CLT-based methods use worked examples, which reduce the initial loading on working memory; segmentation of material into bite-sized pieces; and dual coding of visual and verbal modalities (such as diagrams with short explanations). By sustaining extraneous load at a low level while managing intrinsic load, instructors can help learners build more mathematics understanding and improved problem-solving skills, enabling more effective and efficient learning.

(c) Growth Mindset

Growth mindset [10] is the disposition that intellectual capacities are not inherent attributes but can be cultivated by persistence, effort, and resilience. For mathematics education, this stands in strong contrast to a fixed mindset, the harmful attitude that mathematical ability is an innate, unmodifiable trait.

Students with a growth mindset view challenges as opportunities for learning and understand that effort is an integral part of learning. When faced with a difficult problem, they will work harder longer, experiment with different methods, and learn from mistakes. Such an attitude is crucial when it comes to mathematics, where anxiety and fear of being wrong typically inhibit progress.

Creating a growth mindset in the classroom involves specific pedagogical shifts: praising effort and strategy instead of natural ability, redefining challenge as brain-growing practice, and valuing productive struggle. Teachers can demonstrate how great mathematicians learned from failure and design tasks that value learning over performance. Students learn to have a growth mindset and become more engaged, persistent, and willing to take intellectual risks. This not only improves grades but also shifts the students' attitudes toward mathematics, reducing anxiety and establishing a lifelong sense of their ability to learn and solve problems.

2.2 Inquiry-Based Learning (IBL) in Mathematics

Inquiry-based learning [11] is an inquiry-driven pedagogy that replaces active, often group-based, exploration with passive reception of information. In mathematics, IBL involves presenting students with difficult problems, conjectures, or open questions before teaching them standard solution methods. Instead of replicating a teacher's procedure, students complete a cycle of investigation, conjecture, argument, and refinement to construct their own conceptualizations of mathematical concepts. Principles underlying these include the creation of a culture of inquiry and critical thinking, transforming the teacher from a lecturer to a facilitator, placing the value of the reasoning process and solution on par with each other, and conceptual understanding emerging from problem-solving.

There is a considerable body of research in support of the efficacy of IBL. Evidence from research repeatedly shows that IBL learning environments lead to enhanced conceptual understanding, improved problem-solving competence, and improved knowledge retention compared to traditional lecture instruction. In addition, IBL has been shown to have a positive impact on students' attitudes towards mathematics, reducing anxiety and improving intrinsic motivation [12] and self-efficacy. This is in part because the process models real-world mathematical practice, allowing students to view

the subject as an active area of exploration instead of a rigid set of rules. Meta-analyses show that all students are helped, though the method can be especially effective at closing achievement gaps for underrepresented groups by placing value on varied approaches to solving problems. Notwithstanding its advantages, adopting IBL poses serious challenges.

Student resistance is common, as learners accustomed to direct instruction may initially struggle with ambiguity and increase cognitive demand. Teacher preparedness is another major hurdle; facilitating IBL requires deep content knowledge and skilled questioning, which many pre-service programs do not adequately address. Time constraints and curricular pressure to cover extensive content can make the slower, more deliberate pace of IBL seem impractical. But teachers can provide more directive direction initially and then increasingly shift responsibility to students. Professional development is at the heart of it, giving teachers regular training in facilitation techniques and co-planning of lessons. Administrative leadership is necessary to redesign success measures away from coverage and into depth of learning and student participation as essential measures of success in learning.

2.3 Culturally Responsive Mathematics Teaching (CRMT)

Culturally responsive mathematics teaching [13] is a pedagogical approach that recognizes the important place that culture takes in learning. It moves beyond a deficit framework, one that posits that students' backgrounds are something to be overcome and instead draws upon those backgrounds as key resources for learning. CRMT operates from a place of knowing that mathematics is not a culture-free subject of study; it is a human invention that has been constructed and developed over multiple civilizations throughout history.

The overall purpose of CRMT is to build a respectful classroom environment where all students, particularly those from historically underrepresented communities, can experience themselves as capable mathematicians. It makes students' own experiences, cultures, and communities matter in relation to mathematical ideas, hence making the topic worthwhile, understandable, and meaningful. This approach not only assists in the construction of positive mathematical identity but also leads to greater conceptual understanding and increased student participation by validating students lived experience as a legitimate avenue for learning.

Including CRMT requires intentional and contemplative practice in curriculum, instruction, and classroom culture. The following strategies provide teachers with a road map.

(a) Curriculum transformation -- Make the mathematical contributions and practices of many cultures a part of the curriculum. This can be from studying the base-20 system of the Maya, Islamic geometric pattern art, advanced North American indigenous astronomy [14], or the origins of the base-10 system among Indians and Arabs. This shows that mathematics is a global, evolving field. Word problems and project-based learning must extend beyond vague, oftentimes Eurocentric contexts. Challenges must be phrased in terms of actual problems of student interest in real life, such as interpreting public health data, calculating the geometry of cultural objects (e.g., beadwork, weaving), or using ratios and percentages to investigate social justice topics such as wage inequality or election trends.

(b) Instructional strategies -- Eliminate lecturer-centering lecture. Establish student-to-student dialogue wherein they can defend their reasoning, commonly indicative of culturally learned modes of communication. Employ strategies like wait time and think-pair-share to honour different rates of processing as well as norms of participation. Make it clear to them that there will often be multiple successful means of solving an issue. Request that students report on the creative solutions they develop, which can be influenced by casual, culturally learned problem-solving heuristics. This indicates that mathematical thinking is valued by merely arriving at a particular correct answer using a particular given method. Incorporate resources like the Nepohualtzintzin (a pre-Columbian Mesoamerican calculating tool) alongside base-10 blocks and geoboards to introduce concepts and demonstrate multiple models of mathematics.

(c) Classroom culture and identity -- Create a classroom culture where students are comfortable taking intellectual risks. This involves ongoing communication so that all students can excel at high levels of math (growth mindset) and actively work to dispel stereotypes about who is able to excel at math. Grant students control over how they demonstrate what they know (e.g., in writing, art, presentation, or modeling) and involve them in the construction of the problems and contexts addressed in class. This is to distribute power and make learning a collective effort. View community members and families as partners. Invite family members to contribute culturally based knowledge that is imbued with mathematics, such as cooking practices, construction, or art. This closes the home-school gap.

Culturally responsive mathematics teaching is not a set of collections of add-on activities but an underlying shift in mind and practice. It challenges teachers to become reflective practitioners who are committed to learning about the cultures of their students and examining their own bias and curriculum materials. By taking on these practices, teachers can transform the mathematics classroom into a space that empowers all learners to deeply comprehend content, create strong mathematical identities, and see the subject as a powerful tool for making sense of and shaping their world.

2.4 Research Objectives

The study aims to measure the following research objectives.

(a) To experimentally test the efficacy of inquiry-based learning in mathematics.

- (b) To assess the impact of technology on the performance of students.
- (c) To talk about reducing math anxiety.
- (d) To provide evidence-based recommendations for teachers.

3. Methodology

3.1 Research Design

The study will employ mixed-methods design, extending over a full academic year. This is to ensure that there is an in-depth grasp of both the quantitative findings and qualitative experiences because of exposure to innovative pedagogical interventions. There will be two study phases. A quasi-experimental design will be used to compare intervention and control group student achievement and engagement scores. A multiple case study design will be employed to gather in-depth, contextualized data from a purposively selected subgroup of the intervention classrooms to explain the quantitative findings. This allows for data triangulation, leading to a more persuasive and detailed evidence base than either approach could alone achieve.

3.2 Participants and Sampling

The research will take place in a variety of local secondary schools to offer generalizability. A cluster sampling method will be used to sample a minimum of 9 classes (approximately 300 students) from 9 schools. Classrooms where teachers follow an organized program of evidence-based practices (IBL, gamification, CRMT, formative assessment). Classrooms match demographic and achievement data and maintain business-as-usual, curriculum-based practice. All the instructors who will be participating are covered in the study. Experience levels and prior training will be captured as a variable.

3.3 Data Collection Procedures

To capture the multi-dimensional impact of the pedagogies, data will be collected from multiple sources. A conventional mathematics test focusing on conceptual understanding and problem-solving will be administered to the two groups at the start and end of the study period to evaluate academic growth. Mathematics anxiety will be assessed by Revised Mathematics Anxiety Rating Scale (RMARS) [15] and mindset will be assessed by Dweck's Mindset Instrument [16] through validated measures. Attendance records, levels of participation, and completion of optional tasks will be collected.

Teachers in the intervention groups will be interviewed mid-year and after the intervention in semi-structured interviews about their experience, perceptions of challenge, and student outcomes they have observed. Small student groups from the intervention classrooms will be asked about their learning experience, motivation, and perception of the novel instruction. A minimum of three observations of each intervention classroom will be conducted using a structured protocol to note fidelity of implementation, teacher facilitation skills, and student discourse.

Intervention teachers will receive an intensive professional development experience prior to the study and then bi-weekly collaborative planning sessions. The intervention will be framed within a set of core strategies to be integrated into existing curricula.

4. Results and Findings

Presentation of mathematics teachers' questionnaire data and 300 students' questionnaire data regarding pedagogical methods, use of digital components, and students' support needs are presented below.

- (a) Teachers' report of moderate to widespread application of IBL methods (3.8 on 5), with greatest adoption by Middle School teachers. IBL was found to have a very high impact on conceptual learning (4.3 out of 5), critical thinking (4.1 out of 5), and student motivation (4.4 out of 5). The most significant implementation challenges were time constraints (reported by 68% of the respondents), lack of training (52%), and resistance to non-routine activity from students (41%). Effective IBL tasks usually included authentic problem scenarios, such as budgeting exercises or geometry design issues, which promoted peer thinking and student independence.
- (b) Digital tool use was extensively made by 82% of the instructors. The tools were associated with heightened problem-solving abilities (3.9 out of 5) and homework completion rates (4.0 out of 5), yet immediate test score improvement was less strong (3.3 out of 5). Technological problems (65%) and equity-access deficiencies (38%) were identified as key obstacles. Open-ended comments noted success with visualization software in being able to support underperforming students in conceptualizing abstract algebraic and geometric ideas.
- (c) Mathematics anxiety was always reported (3.7 out of 5), greater in female, and Forms 4 and 6 students. The most effective strategies for reducing anxiety were growth mindset messages (4.3 out of 5), low-stakes formative testing (4.2 out of 5), and learning in groups (4.0 out of 5). Teaching in small groups and linking to real life were also rated high (4.1 out of 5). Teachers cited empathy, patience, and clear strategy instruction as key to helping students regain math confidence.

(d) Teachers pointed to high need for professional development, particularly in IBL implementation (76%) and incorporating digital tools (71%). Trauma-informed math instruction and peer coaching were also cited. On the more macro school scale, reduced class sizes (70%), increased planning time (67%), and improved mental health resources (58%) were proposed as needed to improve math outcomes.

These findings point to the necessity of technology-enhanced and inquiry-based instruction for more student depth of understanding and engagement. This is contingent, however, on overcoming systemic barriers in the form of training gaps, time limitations, and inequities in resource availability. A multi-faceted solution (integrating evidence-based pedagogy, caring classroom communities, and institutional commitment to teacher capacity) is needed to advance mathematics learning.

5. Discussion

Culturally responsive mathematics teaching [17] is not an add-on, but a pedagogical revolution demanded in the interests of equity, engagement, and deep learning. Dominant mathematics teaching has one Eurocentric narrative, which implicitly pushes out students from non-Euro cultures. CRMT explicitly recognizes the mathematical knowledge and intellectual contributions of all cultures, constructing a classroom in which every student belongs and can achieve. This is especially significant with a view to removing achievement and opportunity gaps. If learners can see their own lives, cultures, and communities reflected in the curriculum, then mathematics is more of a helpful and applicable tool, not a mere abstract set of rules. Such relevance triggers intrinsic motivation because the students will most likely work on problems that in some way relate to their hopes and experiences. CRMT connects new math to students' prior knowledge from their homes and communities. In the process, they can stabilize their current cognitive structures more, leading to a more firm, flexible understanding than memorization can provide, and establish confident student mathematicians by breaking the myth of math as a technical field for the privileged elite. It resists math anxiety by putting students as authors of their own learning, using their own perspectives to do problems. Mathematics is a human invention, developed across continents and cultures. CRMT delights in this reality by highlighting the contributions of Islamic, African, Asian, and Indigenous mathematicians and scholars, constructing a more accurate and richer history of the subject.

Implementing CRMT requires concerted effort in classroom culture, instruction, and curriculum. Infuse the mathematical practices of many cultures. Frame word problems and projects as issues that will be relevant to students' lives. Instead of classic train-leaving-the-station problems, work with contexts like allocating fairness to resource distribution in their community, social justice data sets, or designing a community garden with geometry. Utilize mathematics as a tool to comprehend and analyze inequality, power, and injustice. Statistics may be applied to investigate wage differences, population pyramids to discuss migration, or algebra to model the environmental impact on different communities. Explain and honour completely diverse ways of solving and reasoning problems. Ask students to describe the approach they or their families use, which may vary from the usual method. This indicates that mathematical thinking is more critical than a single correct answer. Move away from lecture, teacher-talk. Engage student-to-student dialogue, where they can explain their solution using their own language and cultural tools. Use strategies like think-pair-share and group problem-solving. Introduce tools like the Nepohualtzintzin (a Mesoamerican abacus) alongside traditional manipulatives to model concepts, showing that mathematics is represented in many forms. Learn about students' cultures, abilities, and passions. Use this as the basis to build rapport and make examples more relevant. A respectfully collaborative classroom [18] is the foundation of CRMT. Use language in terms of effort and improvement, not ability. Give students options about how to show what they understand (e.g., presentation, writing, model). Get them involved in developing problems and contexts in class.

Mathematics anxiety [19] is a product of the complex interaction between environmental, instructional, and psychological factors, including past negative experience such as public correction or timed testing, cultural myths that mathematics is an innate ability and not learned, and instructional focuses on speed and memory and not understanding. This apprehension finds vent in fear, evasion, and impaired cognitive performance, particularly under conditions of pressure, eventually affecting students' performance and confidence. Effective intervention has to tackle such root causes on various fronts: pedagogical, low-stakes, formative evaluations and replacement of timed tests by a process-perspective approach with visualization tools, manipulatives, and real-world incorporation de-pressurizes performance but grounds abstract concepts in concrete experience. Mindfulness and breathing exercises [20] can mitigate physiological stress responses when working with mathematics. Social-emotionally, organization and diverse role models of structured peer collaboration resist isolation and stereotypes, providing a supportive environment in which mistakes are seen as learning opportunities. Systemically, professional development prepares teachers to recognize indicators of anxiety and assume trauma-informed practice, and curriculum design that scaffolds by connecting new knowledge to previous knowledge and linking mathematics to students' personal and cultural backgrounds enhances relevance and access. Through the synergy of these interventions (empathetic teaching, inclusive curricula, collaborative learning, and psychological supports), teachers are able to shatter the cycle of fear, transforming math classrooms into places where students feel competent, secure, and can immerse themselves deeply into mathematical dilemmas.

6. Conclusion and Recommendations

The study validates that innovative, evidence-based instructional practices like inquiry-based learning, infusion of digital tools, culturally responsive teaching, and anxiety-informed teaching play a pivotal role in mathematical identity, conceptual understanding, and student engagement. Findings indicate that learning approaches emphasizing active learning, life relevance, and psychological safety not only promote academic achievement but also reduce math anxiety and drive growth mindsets. However, implementation relies on system support and teacher readiness.

The following are some recommendations for different stakeholders.

- (a) Teachers must adopt balanced pedagogy that combines IBL, technology, and explicit social-emotional support. Use low-stakes formative assessment and process over product. Use culturally responsive contexts to increase belonging and relevance.
- (b) Education Bureau must invest in long-term, applied professional development in IBL, digital literacy, and trauma-informed practices. Reduce mathematics class sizes where possible to allow differentiated and personalized teaching.
- (c) Principals need to ensure fair access to technology and mental health support as a top priority. Realign curriculum standards to be more flexible and receptive to in-depth, inquiry-based learning rather than content coverage. Support teacher collaboration through coaching and professional learning communities.
- (d) Institutions need to incorporate training in culturally responsive pedagogy, growth mindset practice, and technology integration into core methods courses. Educate future teachers on how to avoid mathematics anxiety using role-play, case studies, and field experiences.

Finally, the transformation of mathematics education will entail a transition from future-oriented, procedural methods to a holistic, student-oriented system that values curiosity, cultural capital, and emotional health as much as intellectual success. By integrating classroom practice, professional development, and system policies with evidence-based interventions, teachers can facilitate all students to be self-assured, adept mathematicians.

References

- [1] Boaler, J. (2022). *Limitless Mind: Learn, Lead, and Live Without Barriers*. HarperOne.
- [2] Dweck, C. (2023). *Mindset: The New Psychology of Success* (Updated Edition). Random House.
- [3] National Council of Teachers of Mathematics (2023). *Principles to Actions: Ensuring Mathematical Success for All*. Reston: National Council of Teachers of Mathematics.
- [4] Chu, S. K. W., Reynolds, R. B., Tavares, N. J., Notari, M., & Lee, C. W. Y. (2021). 21st century skills development through inquiry-based learning from theory to practice. Springer International Publishing.
- [5] Caffrey, T. (2023). *Imagination and Pedagogy: Reclaiming the Educational in Further Education* (Doctoral dissertation, University of Leeds).
- [6] Kusuma, J. W. (2021). Constructivism from philosophy to mathematics learning. *International Journal of Economy, Education, and Entrepreneurship*, 1(2), 104-111.
- [7] Foster, C., & Mauzard, N. (2025). Unifying Perspectives: Gestalt and Piagetian Learning Theories in the 21st Century Classroom. *East African Journal of Education and Social Sciences*, 6(1), 24-30.
- [8] Lasmawan, I. W., & Budjarta, I. W. (2020). Vygotsky's zone of proximal development and the students' progress in learning (A heutagogical bibliographical review). *Jurnal Pendidikan Indonesia*, 9(4), 545-552.
- [9] Szulewski, A., Howes, D., van Merriënboer, J. J., & Sweller, J. (2021). From theory to practice: the application of cognitive load theory to the practice of medicine. *Academic Medicine*, 96(1), 24-30.
- [10] Yeager, D. S., & Dweck, C. S. (2020). What can be learned from growth mindset controversies? *American psychologist*, 75(9), 1269.
- [11] Joseph, V., Sheikh, I., & Rajani, S. (2022). Inquiry based learning method of teaching in education: A literature review. *Webology*, 19(3), 799-813.
- [12] Meulenbroeks, R., van Rijn, R., & Reijerkerk, M. (2024). Fostering secondary school science students' intrinsic motivation by inquiry-based learning. *Research in Science Education*, 54(3), 339-358.
- [13] Abdulrahim, N. A., & Orosco, M. J. (2020). Culturally responsive mathematics teaching: A research synthesis. *The urban review*, 52(1), 1-25.
- [14] Maryboy, N. C. (2020). Process and relationship in indigenous astronomy: Connectivity of mother earth and father sky. *International Journal of Applied Science and Sustainable Development*, 2(2), 14-24.
- [15] Khasawneh, E., Gosling, C., & Williams, B. (2021). What impact does maths anxiety have on university students? *BMC psychology*, 9(1), 37.
- [16] Affandi, L. H., Jampel, I. N., Pujawan, I., Sri Mertasari, N. M., & Ratnaya, I. G. (2025). Psychometric properties of adapted mindset instruments: A comprehensive comparison. *Pakistan Journal of Life & Social Sciences*, 23(1), 3696-3710.
- [17] Bonner, E. P. (2021). Practicing culturally responsive mathematics teaching. *Mathematics teacher: Learning and teaching PK-12*, 114(1), 6-15.
- [18] Ching, D. A. (2020). Two cubed approach in a collaborative classroom and the enhanced algebra and social skills of college students. *Universal Journal of Educational Research*, 8(10), 4920-4930.
- [19] Cipora, K., Santos, F. H., Kucian, K., & Dowker, A. (2022). Mathematics anxiety—where are we and where shall we go? *Annals of the New York Academy of Sciences*, 1513(1), 10-20.
- [20] Quek, F. Y., Majeed, N. M., Kothari, M., Lua, V. Y., Ong, H. S., & Hartanto, A. (2021). Brief mindfulness breathing exercises and working memory capacity: Findings from two experimental approaches. *Brain Sciences*, 11(2), 175.